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Abstract. The aeroassisted flight experiment (AFE) refers to

a spacecraft to be launched and then recovered by the space

shuttle in 1994. It simulates a transfer from a geosynchronous

Earth orbit (GEO) to a low Earth orbit (LEO). Specifically, the

AFE spacecraft is released from the space shuttle and is

accelerated by means of a solid rocket motor toward Earth, so as

to achieve atmospheric entry conditions close to those of a

spacecraft returning from GEO. Following the atmospheric pass,

the AFE spacecraft ascends to the specified LEO via an

intermediate parking Earth orbit (PEO). The final maneuver

includes the rendezvous with and the capture by the space

shuttle. The entry and exit orbital planes of the AFE spacecraft

are identical with the orbital plane of the space shuttle.

In this report, with reference to the AFE spacecraft, an

actual GEO-to-LEO transfer is considered and optimal trajectories

are determined by minimizing the total characteristic velocity.

The optimization is performed with respect to the time history of

the controls (angle of attack and angle of bank), the entry path

inclination and the flight time being free. Two transfer

maneuvers are considered: (DA) direct ascent to LEO; (IA)

indirect ascent to LEO via PEO.

While the motion of the AFE spacecraft in a 3D-space is

described by a system of six ODEs, substantial simplifications

are possible if one exploits these facts: (i) the instantaneous

orbital plane is nearly identical with the initial orbital plane;
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(ii) the bank angle is small; and (iii) the Earth's angular

velocity is relatively small. Under these assumptions, the

complete system can be decoupled into two subsystems, one

describing the longitudinal motion and one describing the lateral

motion.

The angle of attack history, the entry path inclination, and

the flight time are determined via the longitudinal motion

subsystem; in this subsystem, the total characteristic velocity

is minimized subject to the specified LEO requirement. The angle

of bank history is determined via the lateral motion subsystem;

in this subsystem, the difference between the instantaneous bank

angle and a constant bank angle is minimized in the least square

sense subject to the specified orbital inclination requirement.

It is shown that both the angle of attack and the angle of

bank are constant. This result has considerable importance in the

design of nominal trajectories to be used in the guidance of AFE

and AOT vehicles.

Key Words. Flight mechanics, astrodynamics, hypervelocity

flight, aeroassisted orbital transfer, aeroassisted flight experiment,

optimal trajectories, guidance trajectories, decomposition techniques,

longitudinal motion, lateral motion, sequential gradient-

restoration algorithm, nonlinear two-point boundary-value problems.
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Notations

C D = drag coefficient;

C L = lift coefficient;

CLp = projected lift coefficient;

C M = moment coefficient;

D = drag, N;

DP = dynamic pressure, N/m2;

E = lift-to-drag ratio modulus;

g = local acceleration of gravity, m/sec2;

h = altitude, m;

h a = thickness of the atmosphere, m;

HR = heating rate, W/m2;

i = orbital inclination, rad;

L = lift, N;

m = mass, kg;

r = radial distance from the center of the Earth, m;

re = radius of the Earth, m;

r a = radius of the outer edge of the atmosphere, m;

S = reference surface area, m2;

t = T_ = dimensionless time;

T = running time, sec;

V = velocity, m/sec;

V a = circular velocity at r = r a, m/sec;

V, = reference velocity, m/sec;

= angle of attack, rad;

y = path inclination, rad;

= wedge angle, rad;
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0 = longitude, rad;

= bank angle, rad;

_e = Earth's gravitational constant, m3/sec2;

p = air density, kg/m3;

p, = reference air density, kg/m3;

T = final time, sec;

= latitude, rad;

× = heading angle, rad;

= angular velocity of the Earth, rad/sec;

= longitude of the ascending node, rad;

AC L = lift coefficient range;

ACLp= projected lift coefficient range;

AV = characteristic velocity, m/sec.

Subscripts

0 = entry into the atmosphere;

1 = exit from the atmosphere;

00 = exit from the initial orbit;

ii = entry into the final orbit;

22 = entry into the parking orbit.

Superscripts

• = derivative with respect to dimensionless time;

~ = variable computed in an inertial system.

Acronyms

AFE

AOT

DA

= aeroassisted flight experiment;

= aeroassisted orbital transfer;

= direct ascent;
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DAOT = direct ascent optimal trajectory;

GEO = geosynchronous Earth orbit;

HEO = high Earth orbit;

IA = indirect ascent;

IAOT = indirect ascent optimal trajectory;

IART = indirect ascent reference trajectory;

LEO = low Earth orbit;

ODE = ordinary differential equation;

OT = optimal trajectory;

PEO = parking Earth orbit;

RT = reference trajectory;

SGRA = sequential gradient-restoration algorithm;

TPBVP = two-point boundary-value problem.
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i. Introduction

The field of aeroassisted orbital transfer (AOT) has

received considerable attention in recent years. For a spacecraft

which must be transferred from a high Earth orbit (HEO) to a low

Earth orbit (LEO), considerable savings in characteristic

velocity are possible if the AOT mode is employed instead of the

all-propulsive mode. In turn, this leads to propellant

savings/payload increases.

In the all-propulsive mode or Hohmann transfer mode, the

spacecraft navigates in the region between HEO and LEO. It must

be braked propulsively twice, once to deorbit from HEO and once

to achieve circularization into LEO.

In the AOT mode or synergistic mode, the spacecraft deorbits

from HEO, undershoots LEO, enters the Earth's atmosphere, and

uses the aerodynamic forces in order to deplete excess velocity.

Then, after exiting the atmosphere, it reaches LEO with

nearly-circular velocity. The resulting savings in propellant

weight are beneficial; however, added thermal protection is

needed to cope with the heating rates generated while the

spacecraft traverses the upper atmosphere at hypervelocity

speeds.

Aeroassisted orbital transfer is not only important for

HEO-to-LEO transfer maneuvers, but may prove to be indispensable

to future planetary flights. In particular, this statement refers

to lunar return vehicles, Mars exploration vehicles, and Mars

return vehicles. Indeed it is known that, for a round-trip
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Earth-to-Mars mission, the total characteristic velocity of the

AOT mode is about half that of the all-propulsive mode.

While the AOT prospects are clearly bright (Ref. i), to take

proper advantage of them it is necessary that guidance and

control systems be designed with care. In turn, this requires the

previous study of optimal trajectories, since they supply the

ideal benchmark that guidance trajectories should strive to

approach (Refs. 2-7).

i.i. Aeroassisted Flight Experiment. Because the AOT idea is

yet untested, NASA has planned an aeroassisted flight experiment

(AFE) involving a spacecraft to be launched and then recovered by

the space shuttle (Refs. 8-9). The experiment simulates a

transfer from a geosynchronous Earth orbit (GEO) to a low Earth

orbit (LEO) and is tentatively scheduled for 1994. Specifically,

the AFE spacecraft is released from the space shuttle and is

accelerated by means of a solid rocket motor toward Earth, so as

to achieve atmospheric entry conditions close to those of a

spacecraft returning from GEO. During the atmospheric pass,

aerodynamic/thermal data are gathered for use in designing AOT

vehicles. Following the atmospheric pass, the AFE spacecraft

ascends to the specified LEO via an intermediate parking Earth

orbit (PEO). The final maneuver includes the rendezvous with and

the capture by the space shuttle. Clearly,the entry and exit

orbital planes of the AFE spacecraft are identical with the

orbital plane of the space shuttle.
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The configuration chosen for the AFE spacecraft is the so-

called raked-cone configuration (Fig. i), which is dominated by

heating rate considerations rather than by aerodynamic performance

considerations. Therefore, the lift-to-drag ratio modulus is very

low, E = 0.28, at the design angle of attack, a = 17 deg;

also, the lift coefficient range is quite low, -0.47 _ C L _ -0.21,

in the angle of attack range 27 _ _ h 7 deg.

One way to solve the problems arising from the fact that

IACLI is small, IACLI = 0.26, is to fix the angle of attack at

= 17 deg, corresponding to C L = -0.38, and use the bank angle to

control both the longitudinal motion and the lateral motion

(Refs. 8-9). Let Lp = Lcos_ denote the vertical projection of the lift,

and let CLp = CLCOS_ denote the projected lift coefficient. Because

-i < cos_ < + i, it is easy to see that IACLpI = 0.76. Hence, the

projected lift coefficient range is three times the lift coefficient

range. To sum up, the control of the longitudinal motion is obtained

by changing the modulus of the bank angle, while the control of the

lateral motion is obtained by changing the sign of the bank angle.

Reference 8 provides a nominal trajectory in which the bank angle

history is represented by five constant-bank-angle segments and

therefore involves four switches of the bank angle.

1.2. AFE Optimal Trajectories. Independently of the present

plans for the aeroassisted flight experiment, it is of interest

to determine the optimal trajectories of the AFE spacecraft. This

study was carried out in Refs. 10-14 under the following

assumptions: (a) the angle of attack is constant, e = 17 deg;

E
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(b) the spacecraft is controlled via the angle of bank; (c) the

entry conditions are identical with those of the nominal

trajectory of Ref. 8. In particular, in an inertial reference

frame,the entry path inclination is fixed, T0 = -4.49 deg.

From the extensive numerical computations, the following conclusions

were obtained in Refs. 10-14:

(i) the optimal trajectories are two-subarc trajectories,

with the bank angle constant in each subarc; hence, the control

is bang-bang;

(ii) in the atmospheric entry phase, the bank angle is

= 176.7 deg, yielding a positive vertical component of the lift,

which in turn helps the path inclination to increase gradually from

the entry negative value to nearly zero value;

(iii) in the atmospheric exit phase, the bank anale is

= 5.5 deg, yielding a negative vertical component of th'e lift,which

offsets the centrifugal force effects due to the curvature of the Earth,

so as to ensure exit conditions compatible with the specified LEO;

(iv) the horizontal component of the lift during the atmospheric

entry phase and the horizontal component of the lift during the

atmospheric exit phase have the same sign and the same order of

magnitude; they are directed in such a way that they nearly offset

the effects due to the Earth's rotation; in this way, the

instantaneous orbital plane is almost identical with the initial

orbital plane, meaning that the wedge angle is nearly zero during

the atmospheric pass; this means that, for efficient flight, the

i
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motion of the AFE spacecraft is nearly planar in an inertial

space; in other words, one must avoid energy dissipation

associated with the lateral motion.

1.3. Present Research. This paper extends the optimization

studies initiated in Ref. 10-14 to the case where (a) the AFE

spacecraft is controlled via both the angle of attack and

the angle of bank and (b) the entry conditions are identical

with those of the nominal trajectory of Ref. 8, except the

path inclination and the velocity, which are optimized. Optimal

trajectories are studied for two transfer maneuvers: (DA) direct

ascent to LEO; (IA) indirect ascent to LEO via PEO.

While the motion of the AFE spacecraft in a 3D-space is

described by a system of six ODEs, substantial simplifications

are possible if one exploits these facts: (i) the instantaneous

orbital plane is nearly identical with the initial orbital plane;

(ii) the bank angle is small; and (iii) the Earth's angular

velocity is relatively small. Under these assumptions, the

complete system can be decoupled into two subsystems, one

describing the longitudinal motion and one describing the lateral

motion.

The angle of attack history, £he entry path inclination, and

the flight time are determined via the longitudinal motion

subsystem; in this subsystem, the total characteristic velocity

is minimized subject to the specified LEO requirement. The angle

of bank history is determined via the lateral motion subsystem;

in this subsystem, the difference between the instantaneous bank
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angle and a constant bank angle is minimized in the least

square sense subject to the specified orbital inclination

requirement.

It is shown that both the angle of attack and the angle of

bank are constant. This result has considerable importance in the

design of nominal trajectories to be used in the guidance of AFE

and AOT vehicles.

1.4. Outline. Section 2 contains the system description, and

Section 3 describes the optimal control problems to be solved.

Section 4 introduces the decomposition technique, leading to the

decoupling of the longitudinal motion (Section 5) from the lateral

motion (Section 6). The experimental data are given in Section 7,

and the numerical results are shown in Section 8. Finally, the

conclusions are given in Section 9.

_ k
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2. System Description

The motion of the AFE spacecraft takes place partly in

space and partly in the atmosphere. For the purposes of this

report, the trajectory begins at GEO (h = 19323 NM = 35786 km)

and ends at LEO (h = 178 NM = 330 km). It includes a preatmospheric

branch, an atmospheric branch, and a postatmospheric branch.

Depending on the nature of the postatmospheric branch, we consider

two transfer maneuvers:(DA) direct ascent to LEO; (IA) indirect

ascent to LEO via an intermediate parking Earth orbit (PEO,

h = 197 NM = 365 km). We assume that GEO, LEO, and PEO are

circular orbits.

For Transfer (DA), the key points of the maneuver are these:

point 00, exit from GEO; point 0, atmospheric entry; point i,

atmospheric exit; point ii, entry into LEO. Point 00 is the

apogee of the preatmospheric transfer orbit 00 + 0; point ii

is the apogee of the postatmospheric transfer orbit 1 + ii.

Propulsive impulses are applied at two points: at point 00

to deorbit from GEO; at point ii in order to circularize the

motion into LEO. See Fig. 2A.

For Transfer (IA), the key points of the maneuver are these:

point 00, exit from GEO; point 0, atmospheric entry;point i,

atmospheric exit; point 22, entry into PEO; and point ii, entry

into LEO. Point 00 is the apogee of the preatmospheric transfer

orbit 00 + 0; point 22 is the apogee of both the first post-

atmospheric transfer orbit 1 + 22 and the second postatmospheric

transfer orbit 22 + ii; point ii is the perigee of the second

postatmospheric transfer orbit 22 + ii. Propulsive impulses are
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applied at three points: at point 00 to deorbit from GEO; at

point 22 in order to raise the height of the perigee of the second

postatmospheric transfer orbit; and at point ii in order to

circularize the motion into LEO. See Fig. 2B.

For the atmospheric portion (h _ h a ) of the trajectory of

the AFE spacecraft, we employ an Earth-fixed system; for the

space portion of the trajectory (h > ha) , we employ an inertial

system; here, h = 400000 ft & 122 km denotes the thickness of
a

the atmosphere. For h _ ha, we compute the air density using

the US Standard Atmosphere, 1976 (Ref. 15); for h > ha, we

assume that the air density is zero. For both the atmospheric

portion and the space portions of the trajectory, we neglect

the effects due to the oblateness of the Earth; we assume that

the gravitational field is central and obeys the inverse square

law.

2.1. Atmospheric Pass. With reference to the atmospheric

portion of the trajectory of the AFE vehicle, the following

additional hypotheses are employed: (a) the atmospheric pass is

made with engine shut off; hence, the AFE spacecraft behaves as

a particle of constant mass; (b) under extreme hypersonic

conditions, the dependence of the aerodynamic coefficients on

the Mach number and the Reynolds number is disregarded; (c) the

sideslip angle is zero; hence, the side force component of the

aerodynamic force is zero; (d) the AFE spacecraft is controlled
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via the angle of attack and the angle of bank.

2.2. Differential System. With the above assumptions,

upon using an Earth-fixed system, and upon normalizing the

interval of integration to unity, the equations of motion include

the kinematical equations (Ref. i0)

8 = _(Vcosy cosx/rcos_), (la)

= T(-Vcosy sin×/r), (ib)

r = T (Vsiny) , (ic)

and the dynamical equations (Ref. i0)

V = T (-D/m- gsiny)

+ T [_2r(siny cos2_ + cosy sin X cos_ sin_)],

y = T[(L/mV) cos_ + (V/r - g/V) cosy + 2_ cos X cos¢]

+ T[(_2r/V) (cosy cos2¢ - siny sin X cos_ sine) ],

= T [(L/mV) sin_/cosy + (V/r)cosy cos X tan¢]

+ _[2_(sin¢ + tany sin X cos¢)]

+ T [(_2r/V)cosx cos_ sin_/eosy].

In the dynamical equations, the symbol _ denotes the angular

velocity of the Earth; terms linear in _ are due to the Coriolis

acceleration; terms quadratic in _ are due to the transport

acceleration. Also in the dynamical equations, the local

acceleration of gravity is given by

(2a)

(2b)

(2c)
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g = Ue/r 2, (3)

where _e denotes the Earth's gravitational constant. In addition,

, the aerodynamic forces are given by

D = (I/2)CD(e)p(h)SV 2,

L = (I/2)CL(e)P(h)SV 2,

where the air density p depends on the altitude h, with

h = r - r e

(4a)

(4b)

(4c)

For given initial conditions, parameter T, and controls e(t)

and _(t), Eqs. (1)-(4) can be integrated in forward time over the

time interval 0 < t < i. Here, the initial time t = 0 corresponds

to atmospheric entry and the final time t = 1 corresponds to

atmospheric exit.

2.3. Control Constraint. To obtain realistic solutions,

the presence of upper and lower bounds on the angle of attack

is necessary. Therefore, the two-sided inequality constraint

e L _< e _< eU, 0 _< t _< I, (5)

must be satisfied everywhere along the interval of integration.

2.4. Transformation Relations.General transformation

relations allow one to pass from quantities computed in an

Earth-fixed system to quantities computed in an inertial system

(direct relations),and viceversa (inverse relations). See Refs.10-11

for details.
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For the kinematic variables, the direct relations are

w

¢=¢,

r = r,

and the inverse relations are

r = r.

For the dynamic variables, the general transformation

relations are

vcosy cos× = Vcosy cos× + _r cos_,

Vcosy sin X = Vcosy sin X,

Vsiny = Vsiny,

and they imply the direct relations

(6a)

(6b)

(6c)

(7a)

(7b)

(7c)

(8a)

(8b)

(8c)

V = /[V 2 + 2_rVcosy cos X cos% + (_r cos_)2], (9a)

tany = VsinT//[ (VcosT) 2 + 2_rVcosy cos X cos_ + (_r cos})2], (9b)

tanx = Vcosy sinx/(Vcos Y cos X + _rcos_), (9c)

and the inverse relations

__J
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v- _[_2_ 2_r_cos_cos_cos_+ (_rcos_)2],

tany : Vsinyl/[(Vcosy)2 2_r_cos_cos_cos$+ Curcos$)21,

(10a)

(10b)

tan X = Vcosy sinx/(Vcosy cos X - _rcos_). (10c)

If the Earth's rotation is neglected (_ = 0), the inertial

quantities appearing in Eqs.(6)-(10) become identical to the

corresponding Earth-fixed quantities. However, this is not the

case if the Earth's rotation is considered (_ _ 0).

2.5. Orbital Elements. Once the state variables are

known, one can compute some important quantities such as the

orbital inclination, the longitude of the ascending node, and

the wedge angle; the latter is the angle between the instantaneous

orbital plane and the entry orbital plane. In the inertial

system, these quantities are defined through the relations

COSl = cos# cos×, (lla)

sin(8 - Q) = coti tan_, (llb)

~ T T

COSn = sini sini 0 cos(_ - _0 ) + cosl COSl 0. (llc)

In the Earth-fixed system, the relations analogous to (ii) are

defined below:

cosi = cos_ cos X,

sin(8 - _q) = coti tan¢,

(12a)

(12b)

cosD = sini sini 0 cos(_ - _0 ) + cosi cosi 0.
(12c)
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If the Earth's rotation is neglected (_ = 0), the inertial

quantities appearing in Eqs. (ii) become identical to the

corresponding Earth-fixed quantities. However, this is not the

case if the Earth's rotation is considered (_ _ 0).

2.6. Initial Conditions. At atmospheric entry, the initial

values of the state variables e0' ¢0' r0' X0 are given in

the inertial system. In particular,

r 0 = r a . (13a)

Because of the relations (ii), the initial values of the orbital

elements i 0' _0' _0 are known. In particular,

_0 = 0,

by definition. The initial values of the state variables V0' Y0

must be consistent with the relation

(13b)

2
P_ _ V0)~2 _ 2r00raV,2 + rO~OaV0cOs2_-0 = 0, (13c)r00 (2V

where V, = V = /_Ue/r a) = 7.831 km/sec is a reference velocity, i.e.,a

the circular velocity at r = r a. This relation arises from

energy conservation and angular momentum conservation applied

to the preatmospheric transfer orbit 00 + 0 connecting GEO with

atmospheric entry.

2.7. Final Conditions. At atmospheric exit, the final

time T is free and must be determined in such a way that

rl = ra"

The final values of the state variables el' _i' X1 must be

consistent with the relation

(14a)
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_l = 0.

This means that the final value of the wedge angle must vanish,

hence that the exit orbital plane must be identical with the

entry orbital plane. The final values of the state variables

Vl' Y1 must be consistent with either the relation

2 2V 2 ~2 2 2z2 2 ~ =(DA) rll( , - Vl) - 2rllraV* + raVlC°S Y1 0

(14b)

(14c)

_c

or the relation

2 2V_ ~2 2 2~2 2 ~ =(IA) r22( - VI) - 2r22raV* + raVlC°S Y1 0.

Equation (14c) refers to the direct ascent case and arises

from energy conservation and angular momentum conservation

applied to the postatmospheric transfer orbit 1 + ii connecting

atmospheric exit with LEO. Equation (14d) refers to the indirect

ascent case and arises from energy conservation and angular

momentum conservation applied to the postatmospheric transfer

orbit 1 + 22 connecting atmospheric exit with PEO.

2.8. Summary. The relations governing the atmospheric pass

include the differential system (1)-(4), the control constraint

(5), and the boundary conditions (13)-(14). In the boundary

conditions, the inertial quantities are related to the Earth-

fixed quantities via the transformation relations (6)-(10);

also, the inertial quantities are related to the orbital elements

via the trigonometric relations (ii). In this formulation,

the independent variable is the time t, 0 _ t _ I. The dependent

variables include six state variables [0(t), _(t) , r(t) , V(t),

y(t), x(t)], two control variables [e(t), _(t)], and one

parameter (T) .

(14d)
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3. Optimal Control Problems

Subject to the previous constraints, different optimal

control problems can be formulated, depending on the performance

index chosen and the type of transfer maneuver considered. Here,

we focus attention on the minimization of the total characteristic

velocity AV, which is a measure of the propellant

required for orbital transfer.

Problem (DA). This problem refers to the direct ascent

to LEO. The functional to be minimized is given by

I = AV = AV00 + AVII, (15a)

with

AV00 = /]ra/r00)V , - (ra/r00)V0cosY0 ,

AVII = /_ra/rll)V, - (ra/rll)VlCOSYl.

Problem (IA). This problem refers to the indirect ascent

to LEO via PEO. The functional to be minimized is given by

(15b)

(15c)

(16a)

with

AV00 = _ra/r00)V, - (ra/r00)V0cosY0,

AV22 = _2rarll/(rllr22 + r_2)]V . -(ra/r22)VlCOSYl,

2

AVII = /]2rar22/(rllr22 + rll)]V, - _ra/rll)V ,.

(16b)

(16c)

(16d)
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4. Decomposition Technique

The study of the optimal trajectories of an AFE vehicle

can be simplified to a considerable degree if the complete

system of differential equations, inequality constraints, and

boundary conditions can be decomposed into a subsystem governing

the longitudinal motion [state variables r(t), V(t), y(t);

control variable _(t); unknown parameter T] and a subsystem

governing the lateral motion [state variables e(t), _(t), x(t);

control variable _(t); known parameter T]. The decomposition

is possible if the following approximations are introduced into

the equations of motion:

i -_ i0,

2
D << l,

2
_ 0.

(17a)

(17b)

(17c)

Approximation (17a) means that the instantaneous orbital plane

is nearly identical with the initial orbital plane. Approximation

(17b) means that the bank angle is small. Approximation (17c)

means that terms quadratic in e are small with respect to terms

linear in _ and terms not containing _. The following relations

arise as a consequence of the approximations (17):

cosi 0 _ cos_ cos×,

cos_ _ 1,

(18a)

(18b)
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_ /[V 2 + 2_rVcos¥ cosi
0],

Vcos_ _ /_V2cos2y + 2_rVcos T cosi0] .

Relation (18a) is due to (12a) and (17a). Relation (18b) is

a restatement of (17b). Relation (18c) is obtained by combining

(9a), (17c),and (18a). Relation (18d) arises from (Sa), (Sb),

(17c),and (18a). As the subsequent analysis shows, the

approximations (17) and the implications (18) are essential

to a simplified study of the longitudinal motion (Section 5),

but nonessential, hence optional, to a simplified study of

the lateral motion (Section 6).

(18c)

(iSd)
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5. Longitudinal Motion

In the Earth-fixed system, the subsystem governing the

longitudinal motion includes the differential equations

= T [Vsiny] , (19a)

Q

V = T[-D/m - gsiny], (19b)

= T [L/mV + (V/r - g/V)cosy + 2_cosi0] , (19c)

the control inequality constraint

_L <--_ i _U' (20)

the initial conditions

r 0 = ra,

2 2
r00r a) + 2_raV0Cos70 cosi0(r a - r00 )

2 a2 2 2+ V0(r cos Y0 - r00) = 0,

the final conditions

(21a)

(21b)

r = r
1 a

and either

(22a)

(DA)
2 2 2

2V2.(rll - rllr a) + 2C0raVlCOSY1 cOSio(r -a rll)

2 _cos2yl 2+ Vl(r - rll) = 0, (22b)
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or

2 r22ra) + 2_raVlCOSYl cosi(IA) 2V2,(r22 - 0(r 2 2a - r22)

2 2 2+ Vl(r cos Y1 - r22) = 0. (22c)

Relations (19)-(22) are obtained from (ic), (2a), (2b), (5),

(13a), (13c), (14a), (14c), (14d) after accounting for (6), (8), the

approximations (17),and the implications (18).

5.1. Performance Indexes. Using (17)-(18), the performance

indexes of the optimal control problems of Section 3 can be

reformulated below. For the direct ascent to LEO, Eqs. (15) become

(Dm _ = A_ = A_O0

with

+ A_II ' (23a)

AV00 = /_ra/r00)V,

2 2

- (ra/r00)_V0c°s Y0 + 2_raV0C°SY0 c°si0)'

AVII = /]ra/rll)V,

- 2 2

- (ra/rll)/(VlC°S Y1 + 2_raVlC°SYl c°si0)"

(23b)

(23c)

For the indirect ascent to LEO via PEO, Eqs. (16) become

(IA)

with

I = AV = AV00 + A'422 + AVil,
(24a)

AV00 = /]ra/r00)V,

- 2 2

- (ra/r00)/(V0cos 70 + 2_raV0Cosy 0 cosi0),
(24b)
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AV22 = /]2rarll/(rllr22 + r_2)]V ,

- (ra/r22)/_V_cos2yl + _raVlCOSy I cosio),

AVII = /[2rar22/(rllr22 + r21)]V, - /_ra/rll)V ,.

(24c)

(24d)

5.2. Summary. The relations governing the

longitudinal motion include the differential system (19), the

control constraint (20), and the boundary conditions (21)-(22).

In this formulation, the independent variable is the time t,

0 < t < i. The dependent variables include three state variables

[r(t), V(t), y(t)], one control variable [_(t)], and one

parameter (T). These variables must be determined in such a way

that the performance index (23) is minimized in the direct ascent

case and the performance index (24) is minimized in the indirect

ascent case.
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6. Lateral Motion

In the Earth-fixed system, the subsystem governing the

lateral motion includes the differential equations

= T(Vcosy cosk/rcos_) , (25a)

= _(-Vcosy sink/r) , (25b)

= T [ (L/mV) sinp/cosy + (V/r)cosy cos X tan_]

+ T[2w(sin_ + tany sin X cos_)]

+ _[(_j2r/v)cosk cos# sin¢/cosy], (25c)

the initial conditions

e 0 = given, (26a)

¢0 = given, (26b)

X0 = given, (26c)

and the final condition

ql = 0. (27a)

It must be noted that the functions r(t), V(t), 7(t), _(t), T

are known from the solution of the optimization problem associated

with the longitudinal motion (Section 5). It must also be noted

that, on account of the definitions (ii) and the transformation

relations (6) and (9), the final condition (27a) can be

rewritten in the functional form
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_i(81 ' _i' XI) = 0,
(27b)

which replaces (27a).

6.1. Performance Index. In the subsystem (25)-(27), the

dependent variables include three state variables [8(t), #(t),

x(t)] and one control variable [_(t)]. There is no parameter,

since T is known. Therefore, the subsystem (25)-(27) admits an

infinite number of solutions for the bank angle _(t). The

solution can be rendered unique by requiring that an optimization

criterion be met, such as minimizing the functional

1

= i (_ - z)2dt, (28)I
J 0

where _ is a parameter. The solution of the optimal control

problem (25)-(28) has the form

(t) = _ = const. (29)

Indeed, it can be readily shown that the multipliers associated

with the constraints (25)-(27) all vanish.

6.2. Two-Point Boundary-Value Problem. For the purposes

of explanation, observe that (29) implies that

1] = O. (30)

Then, the subsystem (25)-(27) augmented by (30) constitutes a

two-point boundary-value problem (TPBVP) in which the unknowns

are the functions 8(t), _(t), x(t), _(t). Since there are four

differential equations and four boundary conditions, one surmises

that a solution might exist; however, because the TPBVP (25)-(27)
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and (30) is nonlinear, the existence of a solution must be

confirmed by numerical tests.

6.3. Remark. While the hypothesis (17c) is essential

to a simplified study of the longitudinal motion, it is optional

to a simplified study of the lateral motion. Indeed, the

previous considerations stand unchanged regardless of whether

2
the _ term is dropped or retained in (25c). If it is

retained, then a slightly more precise solution is obtained

for the lateral motion.

E L
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7. Experimental Data

The following data were used in the numerical experiments.

Spacecraft Data. The AFE configuration is shown in Fig. i.

The mass of the AFE spacecraft is m = 1678 kg; the reference

surface area is S = 14.31 m 2. For this configuration, the drag

coefficient C D = CD(e) is shown in Fig. 3A, the lift coefficient

CL = CL(e ) is shown in Fig. 3B, the lift-to-drag ratio modulus

E = E(_) is shown in Fig. 3C, and the drag polar C D = CD(C L)

is shown in Fig. 3D. See also Table i.

The functions appearing in Fig. 3 can be approximated

by the relations

2

C D = A 0 + AI_ + A2_ ,

2

C L = B 0 + Bl_ + B2_ ,

2

E = C 0 + Cle +C2_ ,

C D = D O + DIC L + D2CL 2,

with

A 0 = 1.565,

B 0 = -0.036,

C0 = 0.036,

DO = 1.235,

A 1 = -0.306,

B = -1.557,
1

C1 = 0.836,

D1 = -2.379,

A 2 = -1.375,

B2 = 1.344,

C2 = -0.041,

D2 = -5.473.

(31a)

(31b)

(31c)

(31d)

(32a)

(32b)

(32c)

(32d)
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The angle of attack is subject to Ineq. (5),

eL _ e _<eU, (33a)

corresponding to

CLL ! CL ! CLU" (33b)

Note that the lower bound in (33a) corresponds to the upper

bound in (33b), and viceversa. This is due to the fact that,

because of the raked-cone configuration of the AFE spacecraft,

the lift coefficient is a decreasing function of the angle of

attack (see Fig. 3B).

In the numerical experiments, three alternative angle of

attack ranges were considered, hence three alternative lift

coefficient ranges were considered,through the following choices:

(i) eL = 7.0 deg, eU = 27.0 deg, (34a)

(ii) eL = 7.0 deg,

(iii) eL = 7.0 deg,

corresponding to

eu = 17.0 deg,

e U = i0.0 deg,

(i) CLL = -0.47, CLU = -0.21,

(ii) CLL = -0.38, CLU = -0.21,

(34b)

(34c)

(35a)

(35b)

(iii) CLL = -0.27, CLU = -0.21. (35c)

For these cases, the values of the maximum lift-to-drag ratio

modulus are
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(i) E = 0.42,max (36a)

(ii) E = 0.28,max (36b)

(iii) E = 0.18,max (36c)

and occur for CL= CLL.

Physical Constants. The radius of the Earth is r e = 6378 km;

the radius of the outer edge of the atmosphere is r = 6500 km;
a

the thickness of the atmosphere is h = 122 km; the Earth's
a

gravitational constant is _e = 0.3986E+06 km3/sec2; the circular

velocity at r = r is V = 7.831 km/sec; the angular velocity
a a

of the Earth is _ = 0.7292E-04 rad/sec.

Atmospheric Model. The assumed atmospheric model is that of

the US Standard Atmosphere, 1976 (Ref. 15). In this model, the

values of the density are tabulated at discrete altitudes. For

intermediate altitudes, the density is computed by assuming an

exponential fit for the function p(h).

D_namic Pressure. The dynamic pressure is computed with

the formula

DP = (I/2)pV 2. (37a)

Heating Rate. The stagnation point heating rate is computed

with the formula

3.07
HR = C/_p/p,)(V/V,) (37b)
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Here, p, = 0.3097E-03 kg/m 3 is a reference density, the density

at h, = 60 km; V, = V = 7.831 km/sec is a reference velocity;
a

the constant C = 282.3 W/cm 2 represents the stagnation point

heating rate at p = p, and V = V,, based on a nose radius of

one foot.

Atmospheric Entry. In the inertial system, the given

initial conditions are as follows: the longitude is @0 =

-134.52 deg; the latitude is _0 = -4.49 deg; the altitude is

h 0 = 122 km, corresponding to the radius r 0 = 6500 km; the

heading angle is X0 = -28.13 deg. The orbital inclination is

n0z0= 28.45 deg; the longitude of the ascending node is =

-126.19 deg; the wedge angle is _0 = 0.00 deg.

Atmospheric Exit. In the inertial system, the desired

final conditions are as follows: the altitude is h I = 122 km,

corresponding to the radius rl = 6500 km; the orbital inclination

is il = 28.45 deg; the longitude of the ascending node is

_i = -126.19 deg; the wedge angle is _i = 0.00 deg.

Transfer (DA). This is the dzrect ascent to LEO. The GEO

conditions are as follows: the altitude is h00 = 35786 km,

corresponding to the radius r00 = 42164 km; the path inclination

is Y00 = 0.00 deg. The LEO conditions are as follows: the

altitude is hll = 330 km, corresponding to the radius rll =

6708 km; the path inclination is YII = 0.00 deg.
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I

Transfer (IA). This is the indirect ascent to LEO via PEO.

The GEO conditions are as follows: the altitude is h00 = 35786 km,

corresponding to the radius r00 = 42164 km; the path inclination

is ¥00 = 0.00 deg. The PEO conditions are as follows: the

altitude is h22 = 365 km, corresponding to the radius r22 =

6743 km; the path inclination is 722 = 0.00 deg. The LEO

conditions are as follows: the altitude is hll = 330 km,

corresponding to the radius rll = 6708 km; the path inclination

is YII = 0.00 deg.

w

z :
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8. Numerical Results

The decomposition technique of Sections 4-6 was implemented

for the AFE spacecraft in connection with the experimental data

of Section 7. First, the longitudinal motion subsystem was

solved with respect to the functions r(t), V(t), 7(t), a(t)

and the parameter T which minimize the total characteristic

velocity, while satisfying the desired LEO requirement; here,

the sequential gradient-restoration algorithm (SGRA, see Refs. 16-18

for recent versions) was employed. Then, with the above functions

and parameter fixed, the lateral motion subsystem was solved

with respect to the functions 0(t), _(t), x(t), _(t) which

minimize the difference _(t) - _ in the least square sense,

being a parameter. This leads to a nonlinear two-point boundary-

value problem (TPBVP); here, the modified quasilinearization

algorithm was employed in conjunction with the method of particular

solutions (MQA/MPS, see Refs. 19-21).

8.1. Effect of the Control Bounds. First, (DA) the direct

ascent to LEO was considered, and optimal trajectories (OT)

were computed for three alternative angle of attack ranges,

corresponding to three alternative lift coefficient ranges,

described by (33)-(36). In each case, consistently with the

results of Ref. 7, it was found that optimality in the longitudinal

motion is achieved by flying at the lift coefficient lower bound,

hence at the angle of attack upper bound. Concerning the

lateral motion, the least square deviation of the bank angle from

a constant value is achieved by flying at constant bank angle.



w

30 AAR-250

Summary results can be found in Table 2, which shows the

following quantities for DAOT Cases (i), (ii), (iii) : the number

of bank angle switches, the flight time, the angle of attack, the

lift coefficient, and the angle of bank; the minimum altitude,

the peak dynamic pressure, and the peak heating rate; the

entry path inclination, the peak change of orbital inclination,

the peak change of longitude of the ascending node, and the

peak wedge angle; the characteristic velocity components and

the total characteristic velocity.

As can be seen, the total characteristic velocities of

DAOT Cases (i), (ii), (iii) are nearly the same. With respect

to the characteristic velocity of Case (ii), that of Case (i)

is 0.1% lower, while that of Case (iii) is 0.2% higher. However,

the solution (ii) is to be preferred because of the following

consideration: it is characterized by CM = 0, where CM is the

moment coefficient (Ref. 8), while this is not the case with

solutions (i) and (iii).

Comparison of DAOT Case (ii) with the DAOT solution presented

in Ref. 14 shows that the entry path inclination is now flatter

(by 0.36 deg). Consequently, the minimum altitude is higher (by

about 0.6 km) ; hence, the peak dynamic pressure and the peak

heating rate are lower than the corresponding quantities in Ref. 14.

8.2. Comparison of AFE Trajectories. Based on the results

of the previous section, we restrict the analysis to Case (ii),

namely the case where Ineqs. (33) have the form



31 AAR-250

(ii) 7.0 < e < 17.0 deg, (38a)

k _

w

(ii) -0.38 < C L < -0.21.

Both (DA) the direct ascent to LEO and (IA) the indirect

ascent to LEO via PEO were considered, and optimal trajectories

(OT) were computed. Once more, it was found that optimality

in the longitudinal motion is achieved by flying at the upper

bound angle of attack, hence at the lower bound lift coefficient.

Concerning the lateral motion, optimality is achieved by flying

at constant bank angle.

For comparison purposes and for (IA) the indirect ascent to

LEO via PEO, a reference trajectory (RT) was also computed.

This is the nominal trajectory of Ref. 8, which is flown at

= 17.0 deg using N s = 4 switches of the bank angle, hence

N = 5 constant values of the bank angle, specifically:

(38b)

_I = -180.0, _2 = -43.9, _3 = 89.9, _4 = -89.9, _5 = 0.0 deg. (39)

For trajectories DAOT, IAOT, and IART, Table 3 shows the

following quantities: the number of bank angle switches, the

flight time, the angle of attack, the lift coefficient, and

the angle of bank; the minimum altitude, the peak dynamic pressure,

and the peak heating rate; the entry path inclination, the peak

change of orbital inclination, the peak change of longitude of

the ascending node, and the peak wedge angle; the characteristic

velocity components and the total characteristic velocity.
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For trajectories DAOT, IAOT, and IART, and for both the

Earth-fixed system and the inertial system, Tables 4-5 show

the entry values (Table 4) and the exit values (Table 5)

of the following quantities: longitude, latitude, altitude,

radius, velocity, path inclination, and heading angle; orbital

inclination, longitude of the ascending node, and wedge angle.

For trajectories DAOT, IAOT, and IART, Fig. 4 shows the

time histories of the following quantities: relative longitude

(Fig. 4A), latitude (Fig. 4B), altitude (Fig. 4C), relative

velocity (Fig. 4D), relative path inclination (Fig. 4E),

relative heading angle (Fig. 4F) ; angle of attack (Fig. 4G),

lift coefficient (Fig. 4H), bank angle (Fig. 4I); dynamic pressure

(Fig. 4J), heating rate (Fig. 4K); inertial orbital inclination

(Fig. 4L), inertial longitude of the ascending node (Fig. 4M),

and inertial wedge angle (Fig. 4N).

From Tables 3-5 and Fig. 4, the following comments arise:

(a) The total characteristic velocity of trajectory DAOT

is less than that of trajectory IAOT, which in turn is less

than that of trajectory IART.

(b) Compared with trajectory IART, trajectories DAOT

and IAOT are characterized by flatter entry (by 0.36 deg), hence

higher minimum altitude (by 3.3 km), lower peak dynamic pressure,

lower peak heating rate, and longer flight time.

(c) The longer flight time of trajectories DAOT and IAOT

vis-a-vis trajectory IART can be explained as follows: while



33 AAR-250

w

w

u

the velocity depletion V 0 - V 1 is about the same for the

three trajectories, the first two are flown at higher altitude,

hence smaller air density, hence less aerodynamic drag.

(d) Compared with trajectory IART, trajectories DAOT

and IAOT involve much smaller values of the peak change of

orbital inclination, peak change of longitude of the ascending

node, and peak wedge angle. Indeed, for trajectories DAOT and

IAOT, these quantities are nearly zero, within i/i00 deg. On

the other hand, for trajectory IART, maxlAi I = 1.08deg,

maxIA_ I = 0.31 deg, max(_) = 1.08 deg.

8.3. Control Considerations. Trajectories DAOT, IAOT,

and IART are all flown at the same angle of attack _ = 17.0 deg,

hence at the same lift coefficient C L = -0.38. This being the

case, the control margin for the angle of attack, hence the

control margin for the lift coefficient, is the same for the

three trajectories.

Concerning the angle of bank, trajectories DAOT and IAOT

are flown with _ = 5.14 deg, while trajectory IART is flown

with five subsequent values of the bank angle [see (39)]. Hence,

trajectories DAOT and IAOT have a larger control margin for

the angle of bank than trajectory IART.

It should be pointed out that trajectories DAOT, IAOT,

and IART are inherently unstable if flown open-loop. For

example, suppose that, at time instant t, there is a positive

difference between the flight velocity and the nominal velocity.

The higher flight velocity yields a higher centrifugal force
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due to the Earth's curvature, hence a higher valse of _, hence a

higher altitude, hence a lower density, hence a lower drag, hence

less velocity decrease vis-a-vis the nominal trajectory.

Therefore, at time instant t + At, the positive difference

between the flight velocity and the nominal trajectory has

further increased, and so on. To sum up, (i) guidance and

control systems must be designed with care; and (ii) feedback

control schemes must be developed to ensure the stability of

the AFE trajectory.

w
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9. Conclusions

In this report,the GEO-to-LEO transfer of an AFE spacecraft is

considered, and optimal trajectories are determined by minimizing

the total characteristic velocity. The optimization is performed

with respect to the time history of the controls (angle of attack

and angle of bank), the entry path inclination and the flight

time being free. Two transfer maneuvers are considered: (DA)

direct ascent to LEO; (IA) indirect ascent to LEO via PEO.

While the motion of the AFE spacecraft in a 3D-space is

described by a system of six ODEs, substantial simplifications

are possible if one exploits the smallness of three key

quantities: the change of orbital inclination; the bank angle;

and the Earth's angular velocity. Indeed, the complete system can

be decoupled into two subsystems, one describing the longitudinal

motion and one describing the lateral motion.

The angle of attack history, the entry path inclination, and

the flight time are determined via the longitudinal motion

subsystem; in this subsystem, the total characteristic velocity

is minimized subject to the specified LEO requirement. The angle

of bank history is determined via the lateral motion subsystem;

in this subsystem, the difference between the instantaneous bank

angle and a constant bank angle is minimized in the least square

sense subject to the specified orbital inclination requirement.

From the extensive numerical computations, the following

conclusions were obtained:

w
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(i) The optimal trajectories are one-subarc trajectories,

with constant angle of attack and constant angle of bank.

Specifically, _ = 17.0 deg and _ = 5.14 deg.

(ii) Throughout the atmospheric pass, the (e,_)-pair

yields a negative vertical component of the lift, which offsets

the centrifugal force effects due to the curvature of the Earth,

so as to ensure exit conditions compatible with the specified

LEO.

(iii) Throughout the atmospheric pass, the (_,_)-pair

yields a horizontal component of the lift which nearly offsets

the effects due to the Earth's rotation. In this way, the

instantaneous orbital plane is almost identical with the initial

orbital plane, meaning that the wedge angle is nearly zero. This

means that, for efficient flight, the motion of the AFE

spacecraft is nearly planar in an inertial space; in other words,

one must avoid energy dissipation associated with the lateral

motion.

(iv) In an inertial reference frame, the entry path

inclination is Y0 = -4.13 deg, thus yielding trajectories about

0.36deg flatter than both the nominal trajectory of Ref. 8 and

the optimal trajectories of Ref. 14. In turn, this results in

higher minimum altitude, lower peak dynamic pressure, and lower

peak heating rate.
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Table i. AFE spacecraft, aerodynamic data.

(deg) C L C D CL/C D C M

7

9

Ii

13

15

17

19

21

23

25

27

-0.2088

-0.2473

-0.2842

-0.3187

-0.3512

-0.3807

-0.4065

-0.4283

-0.4458

-0.4595

-0.4707

1.5078

1.4826

1.4555

1.4258

1.3915

1.3549

1.3132

1.2688

1.2187

1.1683

1.1182

-0.1385

-0.1668

-0.1953

-0.2235

-0.2524

-0.2810

-0.3095

-0.3376

-0.3658

-0.3933

-0.4210

0.0295

0.0232

0.0171

0.0113

0.0054

-0.0004

-0.0064

-0.0123

-0.0181

-0.0235

-0.0287
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Table 2. Effect of the control bounds,

main properties.

Quantity DAOT DAOT DAOT

Case (i) Case (ii) Case (iii)

Units

N 0 0 0
s

T 1045 845 689

27.0 17.0 i0.0

C L -0.47 -0.38 -0.27

3.45 5.14 8.18

sec

deg

w

deg

L

min(h) 78.6 78.1 77.3 km

max(DP) 991 1040 1160 N/m 2

max(HR) 134 135 141 W/cm 2

w

Y0 -4.08 -4.13 -4.20 deg

maxlAi I 0.01 0.01 0.01 deg

maxlA_ I 0.01 0.01 0.01 deg

max(_) 0.01 0.01 0.01 deg

v

AV00 1.490 1.490 1.490 km/sec

AVII 0.070 0.072 0.075 km/sec

_V 1.560 1.562 1.565 km/sec

w
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Table 3. Comparison of AFE trajectories,

main properties.

Quantity DAOT IAOT IART

Case (ii) Case (ii)

Units

w

N s 0 0 4

T 845 821 486

17.0 17.0 17.0

C L -0.38 -0.38 -0.38

5.14 5.14 (*)

sec

deg

m

deg

min (h) 78.1 78.1 74.8 km

max (DP) 1040 1039 1578 N/m 2

max (HR) 135 135 156 W/cm 2

Y0 -4.13 -4.13 -4.49 deg

maxIAi i 0.01 0.01 1.08 deg

maxIA_ i 0.01 0.01 0.31 deg

max(n) 0.01 0.01 1.08 deg

AV00 1.490 1.490 1.491 km/sec

AV22 0.000 0.072 0.088 km/sec

AVII 0.072 0.010 0.010 km/sec

AV 1.562 1.572 1.589 km/sec

(.) Values of _i' _2' _3' _4' _5 are given by Eqs. (39).

i •
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Table 4. Comparison of AFE

entry conditions.

trajectories,

Quantity DAOT

Case(ii)

IAOT

Case (ii)

IART Units

w %0

0o

_o

h 0

r 0

V 0

V 0

Y0

Y0

X0

X0

-134.52

-134.52

-4.49

122

6500

9.906

10.308

-4.296

-4.128

-29.42

-28.13

-134.52

-134.52

-4.49

122

6500

9.906

10.308

-4.296

-4.128

-29.42

-28.13

-134.52

-134.52

-4.49

122

6500

9.895

10.308

-4.675

-4.487

-29.42

-28.13

deg

deg

deg

km

km

km/sec

km/sec

deg

deg

deg

deg

i0

7

l0

n o

no

n o

29.73

28.45

-126.62

-126.19

0.00

0.00

29.73

28.45

-126.62

-126.19

0.00

0.00

29.73

28.45

-126.62

-126.19

0.00

0.00

deg

deg

deg

deg

deg

deg
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Table 5. Comparison of AFE trajectories,

exit conditions.

Quantity DAOT IAOT

Case (ii) Case (ii)

IART Units

e I -78.90 -80.50 -103.31 deg

el -75.37 -77.07 -101.28 deg

_i 22.79 22.28 12.84 deg

h I 122 122 122 km

r I 6500 6500 6500 km

V 1 7.481 7.491 7.462 km/sec

Vl 7.882 7.892 7.876 km/sec

T 1 0.803 0.860 1.358 deg

Y1 0.762 0.816 1.287 deg

×i -18.52 -19.21 -27.15 deg

X1 -17.52 -18.17 -25.61 deg

i I 29.05 29.10 29.82

i 28.46 28.46 28.46
1

-128.04 -127.92 -126.74
1

-126.20 -126.20 -126.16
1

0.97 0.90 0.ii
n 1

___ 0.00 0.00 0.02
±

deg

deg

deg

deg

deg

deg
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